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The generalized Langmuir equation proposed in part 1 is extended to
monolayer adsorption with lateral interactions and to multilayer adsorption on
heterogeneous surfaces with random distribution of adsorption sites. New
differential functions, useful for interpreting the adsorption data, are introduced
to study the mathematical and physical properties of this equation. These
functions are applied to study three gas adsorption systems available from the
literature.
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Gasadsorption auf energetisch heterogenen Feststoffen, 2. Mitt.: Die theoretische
Erweiterung einer generalisierten Langmuir-Gleichung und ihre Anwendung zur
Analyse von Adsorptionsdaten

Die generalisierte Langmuir-Gleichung, die in der 1.Mitt. beschrieben
wurde, wird fiir die einlagige Adsorption mit lateralen Wechselwirkungen und
fir die viellagige Adsorption auf heterogenen Oberflichen mit einer
Zufallsverteilung von Adsorptionsplatzen erweitert. Es werden neue
Differentialfunktionen zur Untersuchung der mathematischen und
physikalischen FEigenschaften dieser Gleichung eingefithrt, die sich als
fruchtbringend zur Interpretation von Adsorptionsdaten erweisen. Diese
Funktionen werden zur Untersuchung von drei Gasadsorptionssystemen aus der
Literatur herangezogen.

Introduction

In the preceding paper' a new equation for the overall gas adsorption
isotherm has been proposed. It is analogous to the empirical equation
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introduced for describing the single-solute adsorption from dilute
solutions®. The above equation has been derived by solving the
fundamental integral equation for the Langmuir local isotherm and
three parameter quasi-Goussian energy distribution. It has been called
the generalized Langmuir equation (GLE). Its mathematical form may
be expressed as follows:

(Ep)" |min
oan =~ e v

where 6; is the relative coverage of a heterogeneous surface; p is the
adsorbate pressure; K is the constant analogous to the Langmuir
constant; m and » are heterogeneity parameters. The relative coverage 0,
is defined as the ratio of the adsorbed amount a by the monolayer surface
coverage ay. The constant K is defined as follows':

K = Kqexp (&)/RT) (2)

where K is the pre-exponential factor and g, is the “characteristic”
adsorption energy for a given distribution function, which determines its
position on the energy axis. The heterogeneity parameters m and n may
change from zero to unity. For m =n the energy distribution,
corresponding to Eq. (1), is symmetrical, however, for m # n it is
asymmetrical. If m > n it is widened on the left-hand side, however for
m < nitis widened on the right-hand side. The mathematical properties
of Eq. (1) and its energy distribution function were discussed in details in
the preceding paper'.

Eq. (1) comprises three main isotherm equations known in the theory
of adsorption on heterogeneous surfaces. For m = n Eq. (1) becomes the
Langmuir-Freundlich equation (LFE), form = 1 and ne(0,1) it reduces
to the T'éth equation (TE), however, for me (0,1) and » = 1 it reduces to
the generalized Freundlich equation (GFE). Eq. (1) and its special cases
are reducible to the Langmuir equation when the heterogeneity
parameters become equal to unity!. Eq.(1) describes the monolayer
localized adsorption of gases without lateral attractive interactions in
the surface phase.

In this paper Eq. (1) will be extended to the monolayer adsorption
with lateral attractive interactions on energetically heterogeneous solids
showing random topography distribution of adsorption sites on the solid
surface. Moreover, we shall generalize Eq. (1) to take into account the
multilayer effects according to the BET adsorption model. The new
functions, useful for interpreting the adsorption data, will be also
introduced to study the mathematical and physical behaviour of Eq. (1)



Physical Adsorption of Gases 1015

and its modified forms. Finally, three gas adsorption systems will be
examined by means of Eq. (1) to show its utility for analysing the
experimental adsorption data.

Results and Discussion

Eztension of Eq. (1) for Fowler-Guggenheim and BET Local Isotherms

In the review® a method for generalizing the single-gas adsorption

isotherms without lateral interactions to the isotherm equations
describing adsorption with lateral interactions is discussed. This method
transforms the overall adsorption isotherms derived for the Langmauir
local behaviour to the overall isotherm equations being an extension of
the Fowler-Guggenheim local isotherm. One limitation of this method is
connected with the topography of adsorption sites on the surface; it may
be used only to the heterogeneous surfaces showing random distribution
of adsorption sites. Extending Eq. (1) according to the above method,
we have:

(3)

8, (p) = { [Kpexp (o 9¢)]”]n}m/"

1 +[Kpexp (a0,

where o is the parameter proportional to the interaction energy between
two nearest neighbouring molecules in the monolayer. The isotherm
Eq. (3) is denoted by a-GLE.

In the review® a procedure for extending the monolayer gas
adsorption isotherms to the multilayer adsorption is also discussed. This
procedure was firstly proposed by Berezin and Kiselev*. According to
this procedure the pressure p in the monolayer gas adsorption isotherms
is replaced by a function % (x), where = p/p, and p, is a saturation
vapour pressure, the monolayer relative coverage 0, is replaced by
0¥ /g (x) and K is replaced by C = Kp,. The symbol 6 is the multilayer
surface coverage and x is the relative pressure. The analytical forms of
the functions 4 (z) and g (x) are dependent upon the multilayer local
adsorption isotherm. For the BET classical adsorption isotherm (BET
equation for the infinite number of adsorbed layers) with a great BET
constant, the functions & (x) and g () are equal to:

hz)=2x (4)
and
g(x)=1/1—=) (8)

However, for the full form of the BET classical isotherm the function
g (z) is given by Eq. (5), whereas the function

h(z) = /(1 —2) (6)
67 Monatshefte fiir Chemie, Vol. 115/8—9
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Tn the paper® the analytical expressions for the functions 4 (x) and g (),

corresponding to another forms of the BET equation, were discussed.
As an example, we present the extended from of Eq. (3) obtained by

means of the functions % (x) and g (z) expressed by Eqgs. (4) and (5):

o _§ [Czexp(a Y1 —a)]" }m/n
O (1 —w) = {1 + [Cxexp (a (8 (1 — )]

(7)

For o =0 (adsorption without lateral interactions in the monolayer)
Eq. (7) may be treated as an extended form of Eq. (1).

Mathematical Properties of the a-GLE

Firstly, we shall discuss the critical parameters of Eq. (3) (a-GLE).
Calculating the second derivative 6°In p/d 6? for Eq. (3) and equating it
to zero, we can evaluate the coordinates of the inflection point for the
adsorption isotherm 8, plotted as a function of In p. These coordinates
are equal to:

6" =[v/(1 +W)T’ (8)
and
Pin =V"{ B exp[a(v/(1 +v))']} (9)
where
v =m/n (10)

However, calculating the first derivative dlnp/d0, and the second
derivative 8*In p/067 for Eq. (3) and equating these derivatives to zero,
we can evaluate the critical parameters; they are:

07 =6 p” =v"/[Kexp(1/m + 1/n)] a
and

o = (m + 1/n)- (/v + 1) (12)

The parameter v may be called an “asymmetry” coefficient. For v =1
(then m = n) the energy distribution corresponding to the GLE is
symmetrical, however, for v # 1itis asymmetrical with an expansion on
the left-hand side (m > %) or on the right-hand side (m < n). Forv =1
(LFE) Egs. (11) and (12) give: 0] = 0.5 and o = 4/n; such a result has
been obtained for the LFE by Dubinin et al.%.

Fig. 1 presents the dependence of 8" vs. Inv (the dashed line) and
In 6] vs. In v (the solid line). These dependences are decreasing functions.
Let us discuss the dependence of 6] vs. Inv; the critical value of 6,
decreases from unity to 1l/e. For n>» m (v-—0 and Inv— — o0) the
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critical coverage value 8" tends to unity; in this case the generalized
Freundlich isotherm” is a bordering equation (n = 1 and m close to zero).
An analogous dependence of 0;" vs. m has been obtained for the
generalized Freundlich equation in 8. For m == we have 0 = 0.5.
However, form >» n (v = oo and In v — o0) the critical value of 6, tends to
1/e; in this case the T'th isotherm® is a bordering equation (m = 1 and »
close to zero). The dependences of p” and o upon the heterogeneity
parameters m and » are more complex than for 8], which depends on the
asymmetry coefficient only.

cr
of

05
1/e

Fig. 1. Dependence of the critical coverage 8" upon the logarithm of the
asymmetry coefficient v (the dashed line) and In 6" vs. Inv (the solid line)

In practical applications of the o-GLE for describing the
experimental data, functions @, ® and v, are very useful; they are
defined as follows:

dlna 13
® =3y (13)
Yy = Infm/e — 1| (14)
and
o(1
— | (15)
Olnp
In the case of Eq. (3) these functions are expressed by:
m (1 — %)
= 16
? T e, (1 — 07 (16)
1/v
v, =In I—_thl/v—mae, (17)

67*
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Fig. 2. Functions ¢ vs. 0, (part A), ¢ vs. In 6, (part B) and ¢? vs. In 6, (part C) for

three special cases of 0-GLE and different values of the parameter a. The

calculations were made by using the parameters: n = 1 and m = 0.5 (a-GFE the

dashed lines), n = m = 0.5 (0-LFE the solid lines) and n = 0.5 and m = 1 (a-TE
the dotted lines)

and

1
|; 0M/(1 — M) —mab, (1 —8Y)

18
1 —mab, (1 —0") (18)

In Figs. 2-6 the model functions ¢, y,, and @ are presented for selected
values of m and n. These functions have been calculated by assuming the
characteristic values of m and n: n =1 and m = 0.5 (the generalized
Freundlich equation involving lateral interactions: «o-GFE),
n=m =0.5 (a-LFE), n =0.5 and m =1 (a-TE).

Fig. 2 presents the function @ vs. 8, and vs. In 6, and the function ¢?
vs. In §; for the above three cases. For a-LFE and a = 0 the dependénce
of ¢ on 0, is linear [cf., Eq. (16)]. However, for a-GFE and o-TF this
function is not linear but it also reaches the value m at 8, = 0. More
interesting is the dependence of ¢ on In8;. This dependence is linear at
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the region of low absolute values of In0,. In the region of 6, > 1 the
following relationship is fulfilled:

0= —nln6, =nlngy —nlna (19)

This relationship may be useful to determine the parameter » from the
experimental adsorption data. The dependence of ¢ on In 6, is linear at
6, — 1 for different values of n, m and a. The lateral interactions (o > 0)
cause an increase in the values of @ in comparison to the values of ¢
calculated for a = 0. The function ¢ vs. In 0, plotted for a greater value of

Fig. 3. Dependences ¢ vs. 0} for a-GF and a-T equations with parameters as in
Fig. 2

a can have a maximum, whereas this function plotted for o =0 is a
decreasing convex curve. Thus, analysing the shape of the experimental
function @ vs. In®, in comparison to its theoretical behaviour, we can
obtain an information about effects due to lateral interactions and
energetic heterogeneity of the adsorbent.

In Fig. 2 the dependence of ¢ on In 6, is also shown for three main
special cases of Eq.(3). This dependence is useful for studying the
applieablhty regions for KEq.(3) and the Dubinin-Radushkevich (DR)
equation'®. The above problem will be discussed later.

Fig. 3 shows the dependence of ¢ on Gl/v plotted for a-GF and a-T
equations. In the case of the a-LFE (n = m) this dependence becomes
identical with that presented in Fig. 2 A, because 0, W =0, However, in
the case of the 0-GF and a-T equations the dependenee @ vs. 8, W is linear
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for o = 0 (cf., Fig. 3), whereas the dependence © vs. 8; is not linear even
for o =0 (cf., Fig. 2 A). A dominating role of the lateral interactions in
the adsorption process may be detected by analysing the experimental
curve @ vs. 87V, If this curve is not linear and lies above the straight line
o=m(l — Otl/ Y) Lef., Eq. (16)], it means that the lateral interactions in
the surface phase are significant. Moreover, the value of ¢ at 9}/ V=0is

- Fig. 4. Functions y,, [Eq. (17)] and @ [Eq. (18)] for a-GFE plotted with regard
to Inp for K =1 and different values of a. The parameters m and » as in Fig. 2

equal to m. If the value of m is equal to unity for a given adsorption
system, it means that this system may be described by a 7'dth-type
equation [Eq. (3) with m = 1]. If m is smaller than unity and greater
than zero, and o = 0, the adsorption system may be described by LI'E
(when @ vs. 8, is linear) or GFE (when ¢ vs. th/ ™ is linear). In the case of
a > 0 it is difficult to predict on the basis of the dependence ¢ vs. th/ v,
which isotherm equation is characteristic for a given adsorption system
{(a-LFE or o-GFE).

Figs. 4-6 present the functions y,, and ® vs. In p plotted according to
Eqgs. (17) and (18), respectively. The plots y,, and @ vs. Inp have been
calculated for n =1, me(0,1) (a-GFE; Fig.4), n = m (a-LFE; Fig. 5),
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Tig. 5. Functions y,, [Eq. (17)] and ® [Eq. (18)] for a-LFE plotted with regard
to Inp for K =1 and different values of a. The parameters m and » as in Fig. 2

6

¢ Inp

Fig. 6. Functions y,, [Eq. (17)] and @ [Eq. (18)] for a-T'E plotted with regard to
Inp for K =1 and different values of a. The parameters m and = as in Fig.2
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ne(0,1), m =1 (o-TE; Fig. 6) and different values of a. For . =0 the
functions v,, and @ are linear for different values of v:
0,

‘D=\Vm~—lnv =IHW =

_ (20)
=nhK—Inv+nlnp

The straight lines y,,, vs. In p, plotted according to Eq. (20) for different
values of n and m, and K = 1, run across the origin of co-ordinates with
the slope equal to n. However, the straight lines @ vs. Inp, plotted
according to Eq. (20), are parallel to the lines y,, vs. lnp; the
displacement between these lines, calculated along the vertical
coordinate is equal to In (1/v).

The functions y,, and ® vs. In p, calculated according to Eqgs. (17) and
(18) for different values of @ > 0, are parallel to the straight lines plotted
according to Eq. (20) in the region of high values of In p. An increase in
the value of o causes only a displacement of the functions y,, and ® in the
region of high pressures, whereas their slope is independent on o and
equal to n. In the case of a-T equation (Fig.6) these functions tend
asymptotically to the straight lines predicted by Eq.(20) when Inp
tends to minus infinity. It means that their slope at Inp - — oo is also
equal to n. However, in the case of a-GF equation at Inp - — o0 the
functions y,, and ® plotted for different values of a become linear with
the slope equal to m. A more complex course of these functions is
observed at the values of In p belonging to the interval (— 4,2). This
complex course is caused by the parameter a > 0, which characterizes
lateral interactions in the surface phase. _

Tt follows from the above discussion of the functions ¢, y,, and ®@ that
these functions are very useful to determine the heterogeneity
parameters m and » from the experimental adsorption isotherms even if
the lateral interactions are significant.

Comparison of GL Equation with the Dubinin-Radushkevich Isotherm

The Dubinin- Radushkevich (DR) isotherm is a very popular equation
in the physical adsorption®®, It may be expressed as follows:

0, = afag = exp {— By [RT In (py/p)*} for p < py (21)

where B, is the heterogeneity parameter, and p, is the pressure at which
the adsorbed amount is equal to ay. In the adsorption on microporous
solids the pressure p, is frequently identified with the saturation vapour
pressure p, (Ref.!%), although many authors treated p, as a



Physical Adsorption of Gases 1023

“characteristic’” pressure corresponding to the adsorbed amount g,
(Ref.?).
The function ¢ corresponding to Eq. (21) is expressed as follows:

¢ =28, (RT)’ (Inpy — np) (22)
However, the square of ¢ is equal to:

0> =4-By(RT) (Inay — Ina) (23)
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Fig. 7. Comparison of the dependences ¢ vs. In p (part A) and ¢ vs. Ina (part B)

for the special cases of GL equation (the solid lines; K = 1, m and n asin Fig.2)

with the DR plots calculated for parameters obtained from Egs. (27), (28), and
(33) (the dashed lines)

Let us compare the functions ¢ and ¢?, given by Eqs. (22) and (23), with
the suitable' functions obtained from GL Eq.(1). The function ¢
corresponding to Eq. (1) is equal to [ef., Eq. (16)]:

o =m(1—6") (24)

As 8, is the function of pressure p [cf., Eq. (1)], the function ¢, Eq. (24),
may be plotted in dependence of Inp; such presentation makes the
comparison of this function with Eq.(22) easier. The curves ¢ (Inp)
calculated for different values of m and n are decreasing ones with an
inflection point (Fig.7). The coordinates of this point are equal to
Inp;, = —In K and o;, = m/2.

The region close to the inflection point may be approximated by a
straight line. In this region both adsorption isotherms, Egs. (1) and (21),
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may be used to describe the experimental data. The analytical
approximation of the function ¢ given by Eq. (24) may be obtained by
expanding Eq.(24) into the Taylor series about the point Inp,.
Substitution of Eq. (1) into Eq. (24) gives:

¢ =m/[1 + (Kp)"] (25)

Expanding Eq. (25) into the Taylor series about the point Inp,;, and
neglecting the terms with the second and higher derivatives, we have:

mn _
0 =m/2 +T(—an—lnp) (26)

Comparison of Eqs. (22) and (26) gives:
B, (RT)* = mn/8 (27)
Inpy=2/n —In K (28)

Egs. (27) and (28) define the functional dependence between parameters
of the DR and GL isotherms in the region in which both equations give a
good representation of the experimental adsorption data.

Eq.(27) may be also obtained by comparing Eq.(23) with the
analogous function corresponding to the GL isotherm. The function o*
relating to Eq. (1) is equal to:

¢’ =m’ (1 -8 (29)

This function plotted vs. In@, similarily as the function ¢ (Inp), is a
decreasing one with an inflection point of the following coordinates:

In@, ;= —v-In2 (30)
¢, =m’[4 (31)

Expanding Eq. (29) into the Taylor series about the inflection point
In 6, ;, and neglecting the terms with the second and higher derivatives,
we have:

0 = m?/4 +m7n'(lna,0—v-ln2—lna) (32)

Comparison of Egs. (23) and (32) gives Eq.(27) and a neW equatlon
defining the dependence between the parameters ag and “0 ; 1t is:

In “0 =In “0 +v-(0.5 —1n2) (33)
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Thus, Egs. (27), (28) and (33) give dependences between all parameters
of Eqs. (1) and (21). Of course, these equations are valid only in the
region of the inflection point of the functions ¢ (In p) and 0% (In6,) [Eqs.
(24) and (29)], in which these functions may be approximated by the
straight lines.
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Fig. 8. DR Eq. (21) (the dashed lines) and GL Eq. (1) (the solid lines) isotherms
calculated for the GL parameters shown in Figs. 2-7 and the DR parameters
calculated by means of Eqgs. (27), (28), and (33) (as in ¥ig.7)

Utilizing these relationships we calculated the DR isotherms
according to Eq. (21) for different values of m and n (the dashed lines in
Fig. 8) in comparison to the suitable GL isotherms (the solid lines in this
figure). This comparison has been made for the special cases of Eq. (1),
ie, LEm=n=1),LFE (m =n=0.5),GFE (m =0.5andn =1) and
TE (n =0.5 and m =1). It follows from Fig.8 that the divergence
between DR and G L isotherms appear at low and high pressures. A great
divergence between isotherms is observed at the high pressures region; it
is caused by the fact that the energy distributions corresponding to DR
and GL isotherms show a most different behaviour at the low adsorption
energies corresponding to high pressures. This effect is shown in Fig. 9, in
which the energy distribution functions relating to DR and GL
isotherms obtained by using the condensation approximation method'!
are compared. Equations for the energy distributions corresponding to
the DR and GL isotherms may be derived by means of the well-known
relationship'*:

F ) = - T 2E) 34
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RT-F2(E)

Fig. 9. Energy distributions obtained by using the condensation approximation

method for the GL Eq. (38) and parameters shown in Figs.7 and 8 (the solid

lines) and for the DR Eq. (37) with parameters obtained from Egs. (27), (28), and
(33) (the dashed lines)

where

e(p) = — RTIn (Kop) (35)

Let us define the energy g, for the DR and GL equations by

& :{ — RT-In(Kypy) for Eq.(21) 56)

RT -In(K/K,) for Eq.(1)

Equations defining the energy distributions for Eq.(l) and (21),
obtained by means of Egs. (34), (35), and (36), are expressed as follows:

F,(RTE + ) = F*(E) = -
—2-ByRTE -exp[— By (RTE)?] for Eq.(21)

and

F,(RTE =F*E)=
ol + &) = I (E) (38)

=%exp (nE)-[1 +exp nE)]~Y+ for Eq.(1)
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where
E = (¢ —¢)/RT (39)

The DR energy distribution is equal to zero at &€ =g, and tends
asymptotically to zero when € — co. However, the energy distributions
calculated according to Eq. (38) for different values of m and n tends
asymptotically to zero for € tending to minus or plus infinity. Therefore,
a great divergence between DE and GL distributions appears at low
adsorption energies, which correspond to high pressures. At high
adsorption energies a best coincidence of the energy distributions is
observed for m =1 and n€(0,1), whereas this coincidence for m e (0,1)
and n =1 is poor. In the region of the maximum the best coincidence
between DR and GL energy distributions is observed for m =n. It
follows from comparison of the energy distributions presented in Fig. 9
that a greatest region of coincidence is observed for DR and LF energy
distributions. This conclusion is in an excellent agreement with the
studies of Dubinin'**, who showed that the DR adsorption isotherm
and the LF isotherm (n = m) are equivalent at a wide region of surface
coverages. The TE isotherm shows also an excellent coincidence to the
DR one in the region of high adsorption energies, but their similarity is
limited by the very poor coincidence in the region of low energies.
However, for GF and DR equations coincidence is better for the low
energies region, than that for LFE and T'E ones, but is very poor for the
high adsorption energies region.

Application of GLE for Analysing Gas Adsorption Data

For the purpose of illustration we applied Eq. (1) for describing the
adsorption of argon on poroussilver at 77.4 K '® and nitrogen on silica gel
at 77.4 K19 The above experimental data were analysed by means of
Eq. (1) with the BET multilayer correction, i.e.:

1 [(Gx)"
T 1l—z|1+(Cx

13

)n]v; C = Rp, (40)

Fig. 10 presents the linear dependence [(1 — z)a]Y vs. [(1 —z)a]V ™"
for adsorption data of argon on porous silver plotted according to the
following relationship:

[1—=z)a]” =a — ()™ [Q —z)a]P e (41)

The parameter n has been evaluated by means of the function v,
[Eq. (20) with m =1]; because this function calculated from the
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X" a (1%
[} 20 40 60 80 100

In{a{1-x)]

45

40

3 :
0 400

8]00 12‘00
(n%p/Ppol

Fig. 10. Linear dependences plotted according to Eqs. (41) (the white circles)

and (42) (the black circles) for adsorption data of argon on porous silver at

77.4 K%, The parameters were taken from Table 1 and a is expressed in number
of atoms

experimental data is linear, the parameter n could be evaluated from its
slope. This parameter and the parameters a,, C and p, are summarized in
Table 1.

The same data have been plotted according to the linear form of DR
Eq. (21) with the BET multilayer correction, it is

In[a (1 —x)] =ay — By (RT)* [In (p/po)* (42)

The linear dependence In[a (1 — )] vs. [In (p/py)]? is presented in
Fig. 10. The parameter p, has been evaluated by means of the functions
¢ plotted according to Eq.(22). However, the parameters ¢, and
By (RTY? were calculated according to Eq. (42) and are also given in
Table 1. It follows from Fig.10 and Table 1 that both isotherm
equations, DR and T'dth (GL with m = 1), give a good representation of
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Fig. 11. Linear dependences plotted according to Eqgs. (41) (the white circles)

and (42) (the black circles and black points) for adsorption data of nitrogen on

silica gel at 77.4K!6. The straight dashed line with the black points was

calculated by using the parameters obtained from Egs. (27), (28), and (33),

whereas the solid line with the black circles was plotted for the best fit

parameters obtained from ¢ vs. Inp (see Table 1 and Fig. 12). The adsorbed
amount is expressed in mmol/g

the argon adsorption data on porous silver. Nevertheless, the parameter
poevaluated by means of Eq. (22) is not equal to p,for argon at 77.4 K. 1t
means that although the DR equation fulfills the argon adsorption data
on porous silver, the mechanism of adsorption in this system is
analogous as in the case of adsorption on wide-porous solids'”. It follows
from the studies of Dubinin'® that in the case of micropore filling the
parameter p, appearing in his equation is frequently identified with p, or
it is close to p,.

Quite similarily as in the case of argon adsorption, the nitrogen
adsorption data on silica gel at 77.4 K were analysed by using DE and
Téth (GLE with m = 1) equations.

Fig.11 presents the dependences (41) and (42) for this adsorption
system. However, Table 1 contains the parameters characterizing the
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nitrogen adsorption on silica gel. In this case the parameters p, and p;
are similar; thus, the mechanism assuming pore filling is more probable.

Table 1 contains also the parameters ay, By (RT)? and p, evaluated
by means of Eqs. (27), (28), and (33). In the case of argon adsorption on
porous silver the parameters ay, By (RT)?, and py, evaluated by means of
the linear dependence Eq. (42) and calculated according to Eqs. (27),
(28), and (33), are very similar. However, in the case of nitrogen

8 04
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Fig. 12. The DR equation linear dependences ¢ vs. Inp (part A) and ¢? vs. Ina

(part B) plotted according to adsorption data of argon on porous silver at

774K (the solid lines with the white circles) and nitrogen on silica gel at

77.4 K8 (the solid lines with the black circles). The dashed lines refer to the DR

parameters obtained from GLE parameters by using relations (27), (28), and (33)
(see Table 1)

adsorption data on silica gel, their similarify is worse. In the first case the
adsorption data were measured at the pressure region about the
inflection point of the function ¢ (In p). In this region Egs. (27), (28), and
(33) are valid. However, the region of nitrogen adsorption data is shifted
in the direction of higher pressures, in which the linear approximation of
¢ (In p) corresponding to GL equation is worse (cf., solid lines in Fig. 12).
In Fig. 12 A the functions ¢ (Inp) are presented and in Fig.12B the
dependence ¢? (Ina) are shown for the both systems discussed above. For
comparison are also shown the straight lines obtained for DR equation
parameters calculated from GLE parameters (the dashed lines in
Fig. 12).

In Fig. 11 is also shown the dependence (42) (the black points and the
dashed line) obtained for the parameters calculated by means of Egs.
(27), (28), and (33) and presented in Table 1.

68 Monatshefte fiir Chemie, Vol.115/8—9
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Therefore, the parameters By (RT)?, a, and p, calculated according
to Eqgs. (27), (28), and (33) differ from those evalnated by means of
Eq. (42). Coe

Nevertheless, we can write three inequalities, corresponding to Egs.
(27), (28), and (33), which determine the difection of changes of these
parameters when the region of the available adsorption data lies far from
the inflection point of the function ¢ (Inp). They are:

By (RTY? < mn/8 (43)
Inad® > ma* —0.193-v (44)
Inpy > 2/n — In K (45)

It follows from Table 1 that the parameters B, (RT)%, a(l))R and p,
calculated according to Eqs. (27), (28), and (33) and evaluated by means
of Eq. (42), satisfy these inequalities.

Extension of GLE to Gas Adsorption on Heterogeneous Surfaces
Characterized by More Complex Energy Distributions

The energy distributions characterizing many real adsorption
systems show complex behaviour’® 2" and they can not be
approximated by simple equations which are obtained from DR and GL
adsorption isotherms. This means that many real adsorption systems do
not fulfil DR and G L equations in a wide pressure range. However, these
systems may be described by the isotherm equations being a linear
combination of the simple adsorption isotherms, i.e.:

6; = Zlfi 6:; (46)
where
fi = agi/ag (47)

Then the energy distribution function corresponding to Eq. (46) is a
linear combination of the simple energy distributions relating to 0, ;, i.e.:

F(e) = Zlfi'FHE) (48)

Figs. 13 A and C show the energy distributions being a sum of the
distributions corresponding to 76th and GF equations. These
distributions have been calculated for different parameters m;, n; and g,
according to the equation derived in the previous paper'. The subscript
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0" refers to the ¢-th simple energy distribution. However, Figs. 13 B and
D present the functions v,,, y; and @ calculated for the following
theoretical adsorption isotherms:

10p \os %%\
0,=07——) +03(—s (49)
1+10p 1+~
0.5 10p)%% e
Y (R P e (50)
149 1+ (10p)™

Fig. 13. The total energy distributions (the solid lines) refering to the isotherms
given by Eq. (49) (part A) and Eq. (50) (part C) with their partial distributions
(the dashed lines) and corresponding functions @ (the dotted lines), y,, (the
dashed lines) and vy, (the solid lines) plotted with respect to Inp (parts B, D)

As it has been shown in Figs.4 and 6, the functions vy,, and @
corresponding to the 7'6th and GF equations (@ = 0) are linear. However,
these functions calculated for the adsorption isotherm given by Eq. (46)
are not linear. Nevertheless, if the adsorption isotherm corresponds to
the energy distribution composed from well separated simple
distributions Fig. 13 A, the functions y,, and ® have linear segments,
from which the heterogeneity parameters may be evaluated. In Fig. 13
the function vy is also shown. This function may be useful to determine
the parameter n at the region of high pressures.

To illustrate the utility of the overall adsorption isotherm given by
Eq. (46) we analysed the argon adsorption data on rutile at 85 K*'. These
data were measured with a great precision® and were used by many

68*
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authors to examine the methods for determining the energy distribution
function® 2%, Qur studies showed that these adsorption data may be
approximated by the following equation:

[C) A ()™ } m) N

a(l —x)=ay {—‘“—1 IO, k@)™

+ g2 {M}(%)

14+ [Coh(x)]™

(51)

where £ (x) is defined by Eq. (6). The adsorption isotherm given by Eq.
(61) takes into account the BET multilayer correction. The first term of
Hq. (51) represents the general form of GLE, whereas the second term
represents its special form, i.e., T'6th equation (GLE with m = 1). The
parameters of Eq. (51) were evaluated as follows: first of all, the function
© (Inp) has been calculated from argon adsorption data on rutile. Its
shape indicates an existence of two main groups of adsorption sites (cf.,
Fig. 14). This conclusion is in a good agreement with studies of Ok and
Kim®, Aston et al.?® and Rudzirisk: and Jaroniec®®, who found three
groups of adsorption sites. According to these studies® 2526 the number
of adsorption sites of the third group is small in comparison to the
number of remaining sites. Therefore, the function ¢ (Inp) makes
possible only the detection of two main groups of adsorption sites. The
function @ (Inp) (see Fig. 14) has been calculated by means of ¢ (In p).
According to Eq. (20) we evaluated the heterogeneity parameter n, from
the linear segment of @ (Inp) in the region of high pressures, which
corresponds to the region of low adsorption energies. Knowing the
parameter n;, the parameters m,, C; may be evaluated by using the
linear segment of the dependence (1/¢) vs. [ (x)]" in the region of high
Ppressures:

(1/9) = (1/m) + [k (%)]"- (C)"/m (52)

The parameter agy; and also the parameter v = m/n may be evaluated by
using the linear segment of the dependence Ina vs. In {1 + [T+ (z)]™"}
in the region of high pressures:

Ina=Inay—In{l +[C-A(x)]™"} (63)

Knowing the parameters ag;, C;, n;, m,, evaluated from the high
pressure adsorption data, we can calculate the adsorption a; according
to the first term of Eq. (51). The adsorption a,, occuring on sites of the
second group may be calculated as follows [cf., Eq. (51)]:

ag=a'(l —x) —ay (54)
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Fig. 14. Funetion ¢ vs. In [#/(1 — x)] (the solid line) and ® vs. In [z/(1 — )] (the
white circles) with the straight line approximation in the region of high pressures
(the dashed line) for the argon adsorption data on rutile at 85 K

Table 2. Parameters characterizing the adsorption of argon on rutile at 85 K (Ref.?!)

[Eq.(51)]
i ad; 0, m; n;
1 630 70 0.60 0.88
2 139 13200 1.00 0.56

* Total @y = 769 cm?®/g, whereas a, evaluated by Dormant and Adamson?? is
equal to 755 cm®/g; the saturation pressure p, = 592 Torr.
q g p Ds

The parameters ayy, Cy, 75 and m, may be evaluated from the adsorption
data ay vs. x by using the same procedure as it is described above. The
adsorption parameters, evaluated for this system, are summarized in
Table 2. However, Fig. 15 presents the theoretical adsorption isotherm,
calculated according to Eq. (51) by using parameters from Table 2, in
comparison to the experimental one. This figure shows also the total
energy distribution F(g) calculated according to Hq.(48), and for
comparison it also shows that calculated by Dormant and Adamson®.
Our function is slightly shifted in the direction of low adsorption energies
in comparison to the distribution evaluated by Dormant and Adamson™.
The position of energy distribution on the energy axis depends on Ky;
our function has been plotted for K, evaluated by Dormant and
Adamson®. However, the courses of both distributions are similar.

Assumption of two subsurfaces (two groups of adsorption sites),
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D
T

£ [l§ccl/mole]

Inla-(0x)

F(E)

P L L It
10 E % %

2
In[x/(1-x)]

Fig. 15. The dependence In[a (1 — z)] vs. In[2/(1 — )] (the white circles) in

comparison to the theoretical curve plotted according to parameters

summarized in Table 2 (part A) and energy distributions F (g) vs. € plotted

according to Dormant and Adamson®® (the solid line in part B) and according to

our approximate evaluation (the dashed line in part B) for the argon adsorption

data on rutile at 85 K2'. The adsorbed amount is expressed in [cm?/g] and F (g)
in ['mol/(cal - cm®)]2":22

characterized by energy distributions ¥ (¢) and F, (€) respectively, is

already sufficient to reflect the main features of the real energy
distribution.

Concluding Remarks

The energy distribution of T'éth-type [m =1 and ne(0,1)] is less
realistic from the physical viewpoint, because it is extended in the
direction of low adsorption energies?. However, the majority of real
gas/solid adsorption systems are characterized by quasi-Gaussian
energy distribution extended in the direction of high adsorption
energiesls—go. Such distributions are generated by GL equation for
n > m. The main disadvantage of the distributions of GL-type with
n > m and ne(0,1) is their behaviour at very high adsorption energies.
They decrease too much slowly in the region of highest energies.
However, they give a good representation of the real energy
distributions at the moderate and lower adsorption energies. In contrast
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to it the T'dth-type distribution approximates well the real energy
distributions at highest adsorption energies. This distribution, although
it does not predict the maximum adsorption energy assuming the Henry
behaviour at very low pressures, decreases sufficiently fast at highest
adsorption energies and in consequence gives Henry’s law at very low
pressures. Therefore, the T6th-type equation [GL equation with m =1
and ne(0,1)] is frequently used to describe the experimental adsorption
systems. Nevertheless, approximation of the real energy distribution by
means of the T'éth-type distribution is possible only then, when the
parameter a("f‘jth is considerably greater than the real value of g, (e.g., @
predicted by the BET method). 1t is illustrated in Fig. 9, which shows
that the real non-normalized function ¥, (€) (in that figure it is DR one),
may be approximated by the non-normalized T'6th-type function F: (€)
satisfying the following inequality:

a§=£Ff(a)-ds>ao=£Fn(s)d8 (55)

The values ag obtained by the 7'éth isotherm from the experimental
adsorption data are usually greater than a, predicted by the BET
method and other equations, such as LF and DR equations® 2, it
confirms our considerations leading to the inequality (55). The effects of
lateral interactions and multilayer effects may cause an extension of the
evaluated energy distribution in the direction of lower adsorption
energies”® 0. Thus, these effects cause an elevation of the adsorption
isotherm at high pressures in comparison to that predicted by a
monolayer isotherm corresponding to the real energy distribution.
However, the adsorption data perturbed by lateral interactions and
multilayer effects are frequently well approximated by the simple 7'6th
equation [Eq. (1) with m = 1]. Then we obtain the Tdth-type energy
distribution which does not coincide with the real distribution at low
adsorption energies. This divergence between the calculated and real
distributions may be caused by multilayer effects and lateral
interactions in the monolayer. Therefore, the determination of
heterogeneity effects by using the experimental adsorption data is very
difficult. Nevertheless, a complex analysis of the adsorption data by
means of different isotherm equations and thermodynamic tests makes
it possible to select a correct adsorption isotherm reflecting the physical
properties of the real adsorption system.
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